Common Core Math Worksheets (For All Standards)

Pairs with Interactive Math Notebooks from Create•Teach•Share

Can be used to follow up or reinforce Interactive Math Notebook lessons. Can also be used for homework, review, or assessment.
Worksheet Titles & Standards

- Multiplication Equations as Comparisons (4.OA.1)
- Word Problems with Multiplicative Comparison (4.OA.2)
- Multi-Step Word Problems (4.OA.3)
- Multiples & Factors (4.OA.4)
- Prime & Composite Number (4.OA.4)
- Patterns (4.OA.5)
- Place Value (4.NBT.1)
- Numerals, Word Form, and Expanded Form (4.NBT.2)
- Comparing Numbers (4.NBT.2)
- Rounding Numbers (4.NBT.3)
- Addition & Subtraction (4.NBT.4)
- Multiplication – By 1 Digit (4.NBT.5)
- Multiplication – By 2 Digits (4.NBT.5)
- Division (4.NBT.6)
- Equivalent Fractions (4.NF.1)
- Comparing Fractions (4.NF.2)
- Decomposing Fractions (4.NF.3)
- Adding & Subtracting Fractions (4.NF.3)
- Adding & Subtracting Mixed Numbers (4.NF.3)
- Word Problems: Adding & Subtracting Fractions (4.NF.3)
- Multiplying Fractions by Whole Numbers (4.NF.4)
- Word Problems: Multiplying Fractions by Whole Numbers (4.NF.4)
- Fractions with Denominators of 10 & 100 (4.NF.5)
- Relating Fractions & Decimals (4.NF.6)
- Comparing Decimals (4.NF.7)
- Relative Sizes of Measurement (4.MD.1)
- Measurement Conversions (4.MD.1)
- Word Problems: Measurement (4.MD.2)
- Word Problems: Area & Perimeter (4.MD.3)
- Line Plots (4.MD.4)
- Understanding Angles (4.MD.5)
- Measuring & Sketching Angles (4.MD.6)
- Unknown Angles (4.MD.7)
- Points, Lines, Line Segments & Rays (4.G.1)
- Angles (4.G.1)
- Perpendicular & Parallel Lines (4.G.1)
- Quadrilaterals & Triangles (4.G.2)
- Lines of Symmetry (4.G.3)
Multiplication Equations as Comparisons

Directions: Write an equation for each situation.

1. 54 is 6 times as many as 9.

2. 5 groups of 8 is equal to 40.

3. 6 groups of 7 items is the same as 42 items.

4. The product of 9 and 4 is 36.

5. 5 multiplied by 9 is 45.

6. 35 is 5 times as many as 7.

7. 6 groups of 4 is equal to 24.

8. 4 groups of 8 items is the same as 32 items.

9. The product of 10 and 12 is 120.

10. 7 multiplied by 7 is equal to 49.

Multiplication Equations as Comparisons

Directions: Write an equation for each situation.

1. 54 is 6 times as many as 9. \(54 = 6 \times 9\)
2. 5 groups of 8 is equal to 40. \(5 \times 8 = 40\)
3. 6 groups of 7 items is the same as 42 items. \(6 \times 7 = 42\)
4. The product of 9 and 4 is 36. \(9 \times 4 = 36\)
5. 5 multiplied by 9 is 45. \(5 \times 9 = 45\)
6. 35 is 5 times as many as 7. \(35 = 5 \times 7\)
7. 6 groups of 4 is equal to 24. \(6 \times 4 = 24\)
8. 4 groups of 8 items is the same as 32 items. \(4 \times 8 = 32\)
9. The product of 10 and 12 is 120. \(10 \times 12 = 120\)
10. 7 multiplied by 7 is equal to 49. \(7 \times 7 = 49\)
Word Problems with Multiplicative Comparison

Directions: For each word problem, write an equation and/or draw a picture or model. Then solve.

1. Ricky made 5 baskets in last week’s basketball game. This week he made twice as many. How many baskets did Ricky make this week?

2. In this week’s soccer game, Julie played 3 times the number of minutes she played in last week’s game. If she played 18 minutes this week, how many minutes did she play last week?

3. In today’s basketball game, Ella made 4 times the number of baskets that Kay made. If Ella made 12 baskets, how many did Kay make?
Word Problems with Multiplicative Comparison

Directions: For each word problem, write an equation and/or draw a picture or model. Then solve.

1. Ricky made 5 baskets in last week’s basketball game. This week he made twice as many. How many baskets did Ricky make this week?

 \[5 \times 2 = ?\]

 10 baskets

2. In this week’s soccer game, Julie played 3 times the number of minutes she played in last week’s game. If she played 18 minutes this week, how many minutes did she play last week?

 \[? \times 3 = 18\]

 6 minutes

3. In today’s basketball game, Ella made 4 times the number of baskets that Kay made. If Ella made 12 baskets, how many did Kay make?

 \[? \times 4 = 12\]

 3 baskets
Multi-Step
Word Problems

Directions: For each word problem, identify which operations to use, write an equation, and/or draw a picture or model. Then solve.

1. Riley made 5 trays of cupcakes for the bake sale. Each tray had 6 vanilla cupcakes and 8 chocolate cupcakes. How many total cupcakes did Riley make for the bake sale?

2. Craig’s goal was to read 40 books during the school year. He reads 14 before winter break and 11 before spring break. How many will he need to read after spring break, in order to meet his goal?

3. On Monday, Lisa played handball for 22 minutes. On Tuesday, she played twice as long. How much time did Lisa spend playing handball altogether on Monday and Tuesday?
Multi-Step Word Problems

Directions: For each word problem, identify which operations to use, write an equation, and/or draw a picture or model. Then solve.

1. Riley made 5 trays of cupcakes for the bake sale. Each tray had 6 vanilla cupcakes and 8 chocolate cupcakes. How many total cupcakes did Riley make for the bake sale?

 \[(6 + 8) \times 5 = ?\]

 70 cupcakes

2. Craig’s goal was to read 40 books during the school year. He reads 14 before winter break and 11 before spring break. How many will he need to read after spring break, in order to meet his goal?

 \[40 - (14 + 11) = ?\]

 15 books

3. On Monday, Lisa played handball for 22 minutes. On Tuesday, she played twice as long. How much time did Lisa spend playing handball altogether on Monday and Tuesday?

 \[(22 \times 2) + 22 = ?\]

 66 minutes
Multiples & Factors

Directions: List the first 8 multiples for each of the following.

3
9
10

Directions: Find all the factors for each of the following.

16
48
50
Multiples & Factors

Directions: List the first 8 multiples for each of the following.

3 3, 6, 9, 12, 15, 18, 21, 24

9 9, 18, 27, 36, 45, 54, 63, 72

10 10, 20, 30, 40, 50, 60, 70, 80

Directions: Find all the factors for each of the following.

16 1, 2, 4, 8, 16

48 1, 2, 3, 4, 6, 8, 12, 16, 24, 48

50 1, 2, 5, 10, 25, 50
Prime & Composite Numbers

Directions: For each of the following, tell whether the number is prime or composite. Then explain how you know.

5 prime composite
Explain: ___

27 prime composite
Explain: ___

32 prime composite
Explain: ___

71 prime composite
Explain: ___
Prime & Composite Numbers

Directions: For each of the following, tell whether the number is prime or composite. Then explain how you know.

5 prime composite
Explain: 5 only has two factors: 1 and 5

27 prime composite
Explain: 27 has more than 2 factors: 1, 3, 9, 27

32 prime composite
Explain: 32 has more than 2 factors: 1, 2, 4, 8, 16, 32

71 prime composite
Explain: 71 only has two factors: 1 and 71
Patterns

Directions: Create a pattern based on the rule given. Then explain what you notice about the pattern.

Start with 1 and multiply by 4.

What do you notice? ___________________________

Start with 3 and add 2.

What do you notice? ___________________________

Directions: Finish the pattern. Then explain what you notice about the pattern.

[Diagram of circles pattern]

What do you notice? ___________________________
Patterns

Directions: Create a pattern based on the rule that is given. Then explain what you notice about the pattern.

Start with 1 and multiply by 4.

1, 4, 16, 64, 256, 1024

What do you notice? After 1, all even numbers and digit in the ones place alternates between 4 and 6

Start with 3 and add 2.

3, 5, 7, 9, 11, 13, 15...

What do you notice? All odd numbers

Directions: Finish the pattern. Then explain what you notice about the pattern.

![Pattern Diagram]

What do you notice? The base and the sides are increasing by 1. The number of circles in base are squared.
Place Value

Directions: Find the value of the number given. Then compare the different values.

What is the value of 5 in the following numbers?

34,562 125,348

Value: ____________ ____________

Compare the value of the 5 in these two numbers:
__

What is the value of 3 in the following numbers?

12,532 683

Value: ____________ ____________

Compare the value of the 3 in these two numbers:
__
Place Value

Directions: Find the value of the number given. Then compare the different values.

What is the value of 5 in the following numbers?

34,562 125,348

Value: 500 5,000

Compare the value of the 5 in these two numbers:

The value of the 5 in 125,348 is 10 times the value of the 5 in 34,562.

What is the value of 3 in the following numbers?

12,532 683

Value: 30 3

Compare the value of the 3 in these two numbers:

The value of the 3 in 12,532 is 10 times the value of the 3 in 683.
Numerals, Word Form, and Expanded Form

Directions: Write each numeral in word form and expanded form.

3,789
Word Form: __________________________
Expanded Form: ______________________

20,605
Word Form: __________________________
Expanded Form: ______________________

109,230
Word Form: __________________________
Expanded Form: ______________________
Numerals, Word Form, and Expanded Form

Directions: Write each numeral in word form and expanded form.

3,789
Word Form: Three thousand eighty-nine
Expanded Form: $3,000 + 700 + 80 + 9$

20,605
Word Form: Twenty thousand, six hundred five
Expanded Form: $20,000 + 600 + 5$

109,230
Word Form: One hundred nine thousand, two hundred thirty
Expanded Form: $100,000 + 9,000 + 200 + 30$
Comparing Numbers

Directions: Use <, >, or = to.

- $8,719 \underline{___} 7,819$
- $125,789 \underline{___} 125,879$
- $32,971 \underline{___} 39,217$
- $5,488 \underline{___} 4,588$
- $374,974 \underline{___} 374,794$
- $4,871 \underline{___} 4,781$
- $344,988 \underline{___} 344,998$
- $51,332 \underline{___} 51,322$
- $1,689 \underline{___} 1,869$

- $36,782 \underline{___} 37,762$
- $671,922 \underline{___} 617,922$
- $5,578 \underline{___} 5,587$
- $23,780 \underline{___} 27,380$
- $219,680 \underline{___} 219,680$
- $1,689 \underline{___} 1,869$
Comparing Numbers

Directions: Use <, >, or = to.

8,719 ___ 7,819
125,789 ___ 125,879
36,782 ___ 37,762
671,922 ___ 617,922
5,578 ___ 5,587
23,780 ___ 27,380
219,680 ___ 219,680

32,971 ___ 39,217
5,488 ___ 4,588
374,974 ___ 374,794
4,871 ___ 4,781
344,988 ___ 344,998
51,332 ___ 51,322
1,689 ___ 1,869
Rounding

Directions: Round to the nearest place given.

Round to the nearest hundred.

23,791 _____________________________

9,921 ______________________________

Round to the nearest thousand.

123,689 ____________________________

23,492 _____________________________

Round to the nearest ten thousand.

41,867 _____________________________

239,901 ____________________________
Rounding

Directions: Round to the nearest place given.

Round to the nearest hundred.

23,791 _____________________________

9,921 ______________________________

Round to the nearest thousand.

123,689 ____________________________

23,492 _____________________________

Round to the nearest ten thousand.

41,867 _____________________________

239,901 ____________________________

Answer Key

23,800

9,900

124,000

23,000

40,000

240,000
Addition & Subtraction

Directions: Find the sum or difference.

32,789 + 21,632 =

645,890 + 238,746 =

41,566 + 33,652 =

533,591 - 272,408 =

93,783 - 68,135 =

540,987 - 348,781 =
Addition & Subtraction

Directions: Find the sum or difference.

\[
\begin{align*}
32,789 &+ 21,632 = 54,421 \\
645,890 &+ 238,746 = 884,636 \\
41,566 &+ 33,652 = 75,218 \\
533,591 &- 272,408 = 261,183 \\
93,783 &- 68,135 = 25,648 \\
540,987 &- 348,781 = 192,206
\end{align*}
\]
Multiplication (by 1 digit)

Directions: Use the strategy of your choice to find the product.

\[
\begin{array}{c}
89 \\
\times 3
\end{array} \quad \begin{array}{c}
625 \\
\times 6
\end{array} \quad \begin{array}{c}
3,822 \\
\times 4
\end{array}
\]

\[
\begin{array}{c}
54 \\
\times 7
\end{array} \quad \begin{array}{c}
819 \\
\times 8
\end{array} \quad \begin{array}{c}
5,677 \\
\times 6
\end{array}
\]
Multiplication (by 1 digit)

Directions: Use the strategy of your choice to find the product.

89 \times 3 = 267

625 \times 6 = 3,750

3,822 \times 4 = 15,288

54 \times 7 = 378

819 \times 8 = 6,552

5,677 \times 6 = 34,062
Multiplication (by 2 digits)

Directions: Use the strategy of your choice to find the product.

92 \times 43 = 4,034
56 \times 34 = 1,896
78 \times 41 = 3,208

83 \times 37 = 3,061
46 \times 28 = 1,288
45 \times 19 = 855
Multiplication (by 2 digits)

Directions: Use the strategy of your choice to find the product.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>56</td>
<td>78</td>
</tr>
<tr>
<td>x 43</td>
<td>x 34</td>
<td>x 41</td>
</tr>
<tr>
<td>3,956</td>
<td>1,904</td>
<td>3,198</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>x 37</td>
<td>x 28</td>
<td>x 19</td>
</tr>
<tr>
<td>3,071</td>
<td>1,288</td>
<td>855</td>
</tr>
</tbody>
</table>
Division

Directions: Use the strategy of your choice to find the quotient.

\[9 \div 789 \] \[6 \div 542 \] \[5 \div 4,293 \]

\[8 \div 453 \] \[5 \div 732 \] \[4 \div 5,615 \]
Division

Directions: Use the strategy of your choice to find the quotient.

\[
\begin{align*}
87 \div 6 & \quad 90 \div 2 & \quad 858 \div 3 \\
q_{789} & \quad 6_{542} & \quad 5_{4,293} \\
56 \div 5 & \quad 146 \div 2 & \quad 1,403 \div 3 \\
8_{453} & \quad 5_{732} & \quad 4_{5,615}
\end{align*}
\]
Equivalent Fractions

Directions: Find an equivalent fraction for each of the following.

\[
\frac{1}{3} = \quad \frac{1}{4} = \quad \frac{2}{5} = \quad \frac{5}{6} = \quad \frac{3}{8} = \quad \frac{5}{8} = \quad \frac{3}{10} = \quad \frac{8}{10} = \quad \frac{1}{12} =
\]
Equivalent Fractions

Directions: Find an equivalent fraction for each of the following.

\[
\frac{1}{3} = \frac{2}{6} \\
\frac{1}{4} = \frac{2}{8} \\
\frac{2}{5} = \frac{4}{10} \\
\frac{5}{6} = \frac{10}{12} \\
\frac{3}{8} = \frac{6}{16} \\
\frac{5}{8} = \frac{10}{16} \\
\frac{3}{10} = \frac{6}{20} \\
\frac{8}{10} = \frac{4}{5} \\
\frac{1}{12} = \frac{2}{24}
\]
Comparing Fractions

Directions: Use <, >, = to compare.

\[
\begin{array}{ccc}
\frac{1}{3} & _ & \frac{2}{5} \\
\frac{1}{2} & _ & \frac{1}{3} \\
\frac{1}{4} & _ & \frac{2}{5} \\
\end{array}
\]

\[
\begin{array}{ccc}
\frac{2}{3} & _ & \frac{3}{4} \\
\frac{2}{5} & _ & \frac{4}{10} \\
\frac{1}{3} & _ & \frac{2}{6} \\
\end{array}
\]

\[
\begin{array}{ccc}
\frac{3}{6} & _ & \frac{2}{3} \\
\frac{1}{3} & _ & \frac{1}{10} \\
\frac{3}{8} & _ & \frac{3}{5} \\
\end{array}
\]
Comparing Fractions

Directions: Use <, >, = to compare.

\[
\frac{1}{3} < \frac{2}{5} \quad \frac{1}{2} > \frac{1}{3} \quad \frac{1}{4} < \frac{2}{5}
\]

\[
\frac{2}{3} < \frac{3}{4} \quad \frac{2}{5} = \frac{4}{10} \quad \frac{1}{3} = \frac{2}{6}
\]

\[
\frac{3}{6} < \frac{2}{3} \quad \frac{1}{3} > \frac{1}{10} \quad \frac{3}{8} < \frac{3}{5}
\]
Decomposing Fractions

Directions: Find 2 ways to decompose each fraction.

\[
\frac{4}{5}
\]

\[
\frac{8}{10}
\]

\[
\frac{7}{12}
\]
Decomposing Fractions

Directions: Find 2 ways to decompose each fraction.

Answers may vary.

\(\frac{4}{5} \)

\(\frac{1}{5} + \frac{3}{5} \)

\(\frac{2}{5} + \frac{2}{5} \)

\(\frac{5}{8} \)

\(\frac{2}{8} + \frac{3}{8} \)

\(\frac{1}{8} + \frac{1}{8} + \frac{3}{8} \)

\(\frac{7}{10} \)

\(\frac{6}{10} + \frac{1}{10} \)

\(\frac{1}{10} + \frac{1}{10} + \frac{5}{10} \)

\(\frac{7}{12} \)

\(\frac{5}{12} + \frac{2}{12} \)

\(\frac{4}{12} + \frac{3}{12} \)
Adding & Subtracting Fractions

Directions: Find the sum or difference.

\[
\frac{1}{4} + \frac{2}{4} = ___
\]

\[
\frac{1}{3} + \frac{1}{3} = ___
\]

\[
\frac{2}{5} + \frac{1}{5} = ___
\]

\[
\frac{3}{6} + \frac{1}{6} = ___
\]

\[
\frac{3}{8} - \frac{1}{8} = ___
\]

\[
\frac{7}{10} - \frac{1}{10} = ___
\]

\[
\frac{5}{12} - \frac{2}{12} = ___
\]

\[
\frac{3}{12} - \frac{1}{12} = ___
\]
Adding & Subtracting Fractions

Directions: Find the sum or difference.

\[
\begin{align*}
\frac{1}{4} + \frac{2}{4} &= \frac{3}{4} \\
\frac{1}{3} + \frac{1}{3} &= \frac{2}{3} \\
\frac{2}{5} + \frac{1}{5} &= \frac{3}{5} \\
\frac{3}{6} + \frac{1}{6} &= \frac{4}{6} \\
\frac{3}{8} - \frac{1}{8} &= \frac{2}{8} \\
\frac{7}{10} - \frac{1}{10} &= \frac{6}{10} \\
\frac{5}{12} - \frac{2}{12} &= \frac{3}{12} \\
\frac{3}{12} - \frac{1}{12} &= \frac{2}{12}
\end{align*}
\]
Adding & Subtracting Mixed Numbers

Directions: Find the sum or difference.

3\(\frac{1}{4}\) + 2\(\frac{2}{4}\) = __

2\(\frac{1}{3}\) + 1\(\frac{1}{3}\) = __

4\(\frac{1}{5}\) + 2\(\frac{1}{5}\) = __

2\(\frac{2}{5}\) + 2\(\frac{3}{5}\) = __

3\(\frac{1}{6}\) - 1\(\frac{2}{6}\) = __

5\(\frac{3}{6}\) - 1\(\frac{1}{6}\) = __

3\(\frac{3}{8}\) - 2\(\frac{1}{8}\) = __

2\(\frac{3}{4}\) - 1\(\frac{1}{4}\) = __
Adding & Subtracting Mixed Numbers

Directions: Find the sum or difference.

3\(\frac{1}{4}\) + 2\(\frac{2}{7}\) = \(\frac{5}{7}\) 3\(\frac{1}{3}\) + 1\(\frac{1}{3}\) = \(\frac{2}{3}\)

4\(\frac{1}{5}\) + 2\(\frac{1}{5}\) = \(\frac{6}{7}\) 2\(\frac{2}{5}\) + 2\(\frac{3}{5}\) = \(\frac{5}{7}\)

3\(\frac{2}{6}\) - 1\(\frac{1}{6}\) = \(\frac{2}{6}\) 5\(\frac{3}{6}\) - 1\(\frac{1}{6}\) = \(\frac{4}{6}\)

3\(\frac{3}{8}\) - 2\(\frac{1}{8}\) = \(\frac{1}{8}\) 2\(\frac{3}{4}\) - 1\(\frac{1}{4}\) = \(\frac{1}{4}\)
Word Problems: Adding and Subtracting Fractions

Directions: For each word problem, write an equation and/or draw a picture or model. Then solve.

1. Daisy has read $\frac{1}{8}$ of the books in her classroom’s library. If she reads another $\frac{1}{8}$ of the books in the first month of school, what fraction of books will she have read?

2. Jackson brought cookies to school to share with his friends. By recess time, $\frac{2}{3}$ of the cookies were left. After recess, another $\frac{1}{5}$ of the cookies were eaten. What fraction of cookies did they have left to enjoy after lunch?

3. Before lunch Luke put together $\frac{3}{10}$ of a puzzle. After lunch he put together another $\frac{4}{10}$ of the puzzle. How much of the puzzle has he completed?
Word Problems: Adding and Subtracting Fractions

Directions: For each word problem, write an equation and/or draw a picture or model. Then solve.

1. Daisy has read \(\frac{1}{8} \) of the books in her classroom’s library. If she reads another \(\frac{1}{8} \) of the books in the first month of school, what fraction of books will she have read?

 \(\frac{2}{8} \) of the books

2. Jackson brought cookies to school to share with his friends. By recess time, \(\frac{3}{5} \) of the cookies were left. After recess, another \(\frac{1}{5} \) of the cookies were eaten. What fraction of cookies did they have left to enjoy after lunch?

 \(\frac{2}{5} \) of the cookies

3. Before lunch Luke put together \(\frac{3}{10} \) of a puzzle. After lunch he put together another \(\frac{4}{10} \) of the puzzle. How much of the puzzle has he completed?

 \(\frac{7}{10} \) of the puzzle
Multiplying Fractions by Whole Numbers

Directions: Find the product.

\[3 \times \frac{1}{4} = ____
\]

\[2 \times \frac{1}{3} = ____
\]

\[4 \times \frac{1}{5} = ____
\]

\[2 \times \frac{2}{5} = ____
\]

\[3 \times \frac{2}{6} = ____
\]

\[5 \times \frac{2}{5} = ____
\]

\[2 \times \frac{3}{8} = ____
\]

\[2 \times \frac{2}{4} = ____
\]
Multiplying Fractions by Whole Numbers

Directions: Find the product.

3 × \(\frac{1}{4}\) = \(\frac{3}{4}\)
2 × \(\frac{1}{3}\) = \(\frac{2}{3}\)

4 × \(\frac{1}{5}\) = \(\frac{4}{5}\)
2 × \(\frac{2}{5}\) = \(\frac{4}{5}\)

3 × \(\frac{2}{6}\) = 1
5 × \(\frac{2}{5}\) = 2

2 × \(\frac{3}{8}\) = \(\frac{6}{8}\)
2 × \(\frac{2}{4}\) = 1
Word Problems: Multiplying Fractions and Whole Numbers

Directions: For each word problem, write an equation and/or draw a picture or model. Then solve.

1. There are 10 players on Kyle’s soccer team. \(\frac{2}{5} \) of player on his team are girls. How many players are girls?

2. Riley and her brother ordered a pizza with 8 slices. If they ate \(\frac{1}{4} \) of the pizza before going to play, how many slices did they eat?

3. Kristy is making cupcakes for her 6 friends. If \(\frac{2}{3} \) of her friends want chocolate. How many chocolate cupcakes will she make?

4. Ten students in Mr. Burke’s class signed up to order lunch. \(\frac{1}{5} \) of those students wanted hot lunch. How many students ordered hot lunch?
Word Problems: Multiplying Fractions and Whole Numbers

Directions: For each word problem, write an equation and/or draw a picture or model. Then solve.

1. There are 10 players on Kyle’s soccer team. \(\frac{2}{5} \) of player on his team are girls. How many players are girls?

 4 of the players are girls.

2. Riley and her brother ordered a pizza with 8 slices. If they ate \(\frac{1}{4} \) of the pizza before going to play, how many slices did they eat?

 They ate 2 slices.

3. Kristy is making cupcakes for her 6 friends. If \(\frac{2}{3} \) of her friends want chocolate. How many chocolate cupcakes will she make?

 4 chocolate cupcakes

4. Ten students in Mr. Burke’s class signed up to order lunch. \(\frac{1}{5} \) of those students wanted hot lunch. How many students ordered hot lunch?

 2 ordered hot lunch.
Fractions with Denominators of 10 & 100

Directions: Find an equivalent fraction. Then find the sum.

\[\frac{3}{10} + \frac{30}{100} \]

\[\frac{5}{10} + \frac{40}{100} \]

\[\frac{6}{10} + \frac{20}{100} \]

\[\frac{4}{10} + \frac{50}{100} \]
Fractions with Denominators of 10 & 100

Directions: Find an equivalent fraction. Then find the sum.

\[
\frac{3}{10} + \frac{30}{100} = \frac{30}{100} + \frac{30}{100} = \frac{60}{100}
\]

\[
\frac{5}{10} + \frac{40}{100} = \frac{50}{100} + \frac{40}{100} = \frac{90}{100}
\]

\[
\frac{6}{10} + \frac{20}{100} = \frac{60}{100} + \frac{20}{100} = \frac{80}{100}
\]

\[
\frac{4}{10} + \frac{50}{100} = \frac{40}{100} + \frac{50}{100} = \frac{90}{100}
\]
Relating Fractions and Decimals

Directions: Write each of the following as a fraction and as a decimal.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relating Fractions and Decimals

Directions: Write each of the following as a fraction and as a decimal.

Fraction: ______
Decimal: ______

Fraction: ______
Decimal: ______
Comparing Decimals

Directions: Use <, >, or = to compare.

0.4 __ 0.35
0.24 __ 0.42
0.3 __ 0.33
0.8 __ 0.80
0.09 __ 0.9
0.27 __ 0.72
0.06 __ 0.6
0.21 __ 0.12
0.1 __ 0.11
0.79 __ 0.8
0.55 __ 0.6
0.05 __ 0.5
Comparing Decimals

Directions: Use <, >, or = to compare.

0.4 ___ 0.35
0.24 ___ 0.42
0.3 ___ 0.33
0.8 ___ 0.80
0.09 ___ 0.9
0.27 ___ 0.72

0.06 ___ 0.6
0.21 ___ 0.12
0.1 ___ 0.11
0.79 ___ 0.8
0.55 ___ 0.6
0.05 ___ 0.5
Relative Sizes of Measurement

Directions: Use the word bank below to help decide which unit of measure would be used in each situation.

<table>
<thead>
<tr>
<th>minutes</th>
<th>hours</th>
<th>grams</th>
<th>kilograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>liters</td>
<td>milliliters</td>
<td>centimeters</td>
<td>kilometers</td>
</tr>
</tbody>
</table>

1. The amount of time it takes to brush your teeth. ________________
2. The amount of soda in a can. ________________
3. The length of a piece of paper. ________________
4. The amount of time it takes to watch a movie. ________________
5. The weight of an apple. ________________
6. The amount of water in a bathtub. ________________
7. The distance to the grocery store. ________________
8. The weight of a pony. ________________
Relative Sizes of Measurement

Directions: Use the word bank below to help decide which unit of measure would be used in each situation.

<table>
<thead>
<tr>
<th>minutes</th>
<th>hours</th>
<th>grams</th>
<th>kilograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>liters</td>
<td>milliliters</td>
<td>centimeters</td>
<td>kilometers</td>
</tr>
</tbody>
</table>

1. The amount of time it takes to brush your teeth. ________________ minutes

2. The amount of soda in a can. ________________ milliliters

3. The length of a piece of paper. ________________ centimeters

4. The amount of time it takes to watch a movie. ________________ hours

5. The weight of an apple. ________________ grams

6. The amount of water in a bathtub. ________________ liters

7. The distance to the grocery store. ________________ kilometers

8. The weight of a pony. ________________ kilograms
Measurement Conversions

Directions: Complete each conversion chart.

<table>
<thead>
<tr>
<th>1 cup</th>
<th>8 fl. ounces</th>
<th>1 liter</th>
<th>1,000 milliliters</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>4,000</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 pound</th>
<th>16 ounces</th>
<th>1 kilogram</th>
<th>1,000 grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>5,000</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 foot</th>
<th>12 inches</th>
<th>1 meter</th>
<th>100 centimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 minute</th>
<th>60 seconds</th>
<th>1 hour</th>
<th>60 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120</td>
<td>2</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Measurement Conversions

Directions: Complete each conversion chart.

<table>
<thead>
<tr>
<th>1 cup</th>
<th>8 fl. ounces</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>11</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 liter</th>
<th>1,000 milliliters</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2,000</td>
</tr>
<tr>
<td>4</td>
<td>4,000</td>
</tr>
<tr>
<td>6</td>
<td>6,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 pound</th>
<th>16 ounces</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 kilogram</th>
<th>1,000 grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3,000</td>
</tr>
<tr>
<td>5</td>
<td>5,000</td>
</tr>
<tr>
<td>7</td>
<td>7,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 foot</th>
<th>12 inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>72</td>
</tr>
<tr>
<td>9</td>
<td>108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 meter</th>
<th>100 centimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>500</td>
</tr>
<tr>
<td>8</td>
<td>800</td>
</tr>
<tr>
<td>10</td>
<td>1,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 minute</th>
<th>60 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>240</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 hour</th>
<th>60 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>360</td>
</tr>
<tr>
<td>8</td>
<td>480</td>
</tr>
</tbody>
</table>
Word Problems: Measurement

Directions: For each word problem, write an equation and/or draw a picture or model. Then solve.

1. Brandon is driving to visit a friend that lives 29.2 miles away. If he stops to get gas after 18.4 miles, how many miles will he have left to go?

2. Natalie has 2 hours to run her errands. She spends 45 minutes at the grocery store and 30 minutes getting her car washed. How much time does she have left to get lunch?

3. Bill’s baseball bag weighs 4 pounds. If he takes out a pair of cleats that weigh 6 ounces, how much will his bag weigh?

4. Kimberly is making strawberry lemonade for her class. She mixes 2\(\frac{1}{2}\) liters of lemonade and 1\(\frac{1}{2}\) liters of strawberry juice. How many liters of strawberry lemonade will Kimberly have?
1. Brandon is driving to visit a friend that lives 29.2 miles away. If he stops to get gas after 18.4 miles, how many miles will he have left to go?

 10.8 miles

2. Natalie has 2 hours to run her errands. She spends 45 minutes at the grocery store and 30 minutes getting her car washed. How much time does she have left to get lunch?

 45 minutes

3. Bill’s baseball bag weighs 4 pounds. If he takes out a pair of cleats that weigh 6 ounces, how much will his bag weigh?

 58 ounces or
 3 pounds, 10 ounces

4. Kimberly is making strawberry lemonade for her class. She mixes 2.½ liters of lemonade and 1½ liters of strawberry juice. How many liters or strawberry lemonade will Kimberly have?

 4 liters
Word Problems: Area & Perimeter

Directions: For each word problem, write an equation and draw a picture to solve.

Bella needs to buy a custom frame for her artwork. The length of the picture she painted is 12 inches and the width is 9 inches. How many square inches of glass will she need?

Picture:

Equation: _____________________
Solution: _____________________

The area of Caleb’s garden is 120 square feet. If the length of his garden is 10 feet, what is the width of his garden?

Picture:

Equation: ________________________
Solution: _________________________

Julia is putting up a fence around her garden. How much fencing will she need if the length of the fence is 8 feet and the width is 12 feet?

Picture:

Equation: ____________________
Solution: _____________________

Steven bought a new rug for his bedroom. The perimeter of the rug is 30 feet and the length is 8 feet. What is the width of his new rug?

Picture:

Equation: _______________________
Solution: ________________________
Word Problems: Area & Perimeter

Directions: For each word problem, write an equation and draw a picture to solve.

Bella needs to buy a custom frame for her artwork. The length of the picture she painted is 12 inches and the width is 9 inches. How many square inches of glass will she need?

Picture:

Equation: $12 \times 9 = A$

Solution: **108 square inches**

The area of Caleb’s garden is 120 square feet. If the length of his garden is 10 feet, what is the width of his garden?

Picture:

Equation: $w \times 10 = 120$

Solution: **12 feet**

Julia is putting up a fence around her garden. How much fencing will she need if the length of the fence is 8 feet and the width is 12 feet?

Picture:

Equation: $(8 + 12) \times 2 = P$

Solution: **40 feet**

Steven bought a new rug for his bedroom. The perimeter of the rug is 30 feet and the length is 8 feet. What is the width of his new rug?

Picture:

Equation: $8 + 8 + 2w = 30$

Solution: **7 inches**
The students in Mrs. Vogel's class measured the lengths of their hands to the nearest ½ inch. Use the tally chart to complete the line plot. Then answer the questions that follow.

<table>
<thead>
<tr>
<th>Length of Hands</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>I I I I</td>
</tr>
<tr>
<td>4 ½</td>
<td>I I I</td>
</tr>
<tr>
<td>5</td>
<td>I I I I I</td>
</tr>
<tr>
<td>5 ½</td>
<td>I I</td>
</tr>
</tbody>
</table>

What is the difference in the length of the longest hands and the shortest?

Mikey's hand is 4 ½ inches long. How much shorter is his hand than the students with the longest hands?
The students in Mrs. Vogel’s class measured the lengths of their hands to the nearest ½ inch. Use the tally chart to complete the line plot. Then answer the questions that follow.

<table>
<thead>
<tr>
<th>Length of Hands</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>IIII</td>
</tr>
<tr>
<td>4 ½</td>
<td>IIII</td>
</tr>
<tr>
<td>5</td>
<td>IIII 1</td>
</tr>
<tr>
<td>5 ½</td>
<td>III</td>
</tr>
</tbody>
</table>

Lengths of Students’ Hands in Inches

What is the difference in the length of the longest hands and the shortest?

$1 \frac{1}{2}$ inches

Mikey’s hand is $4 \frac{1}{2}$ inches long. How much shorter is his hand than the students with the longest hands?

1 inch
Understanding Angles

Directions: Find the measure of each angle.

Angle Measure: _____

Angle Measure: _____

Angle Measure: _____

Angle Measure: _____
Understanding Angles

Directions: Find the measure of each angle.

Angle Measure: 85°

Angle Measure: 135°

Angle Measure: 125°

Angle Measure: 65°
Measuring & Sketching Angles

Directions: Use a protractor to find the measure of each angle.

Measure: ____ Measure: ____ Measure: ____

Directions: Use a protractor to sketch an angle for each measure given.

Measure: 55° Measure: 130°
Measuring & Sketching Angles

Directions: Use a protractor to find the measure of each angle.

Measure: ____ Measure: ____ Measure: ____

Directions: Use a protractor to sketch an angle for each measure given.

Measure: 55° Measure: 130°
Unknown Angles

Directions: Find the unknown angles.

If $\angle ABC = 145^\circ$, what is the measure of $\angle ABD$?

If $\angle EFG = 80^\circ$, what is the measure of $\angle EFH$?

If $\angle JKL = 70^\circ$, what is the measure of $\angle MKL$?

If $\angle NOP = 130^\circ$, what is the measure of $\angle QOP$?
Unknown Angles

Directions: Find the unknown angles.

If $\angle ABC = 145^\circ$, what is the measure of $\angle ABD$?

70°

If $\angle EFG = 80^\circ$, what is the measure of $\angle EFH$?

40°

If $\angle JKL = 70^\circ$, what is the measure of $\angle MKL$?

25°

If $\angle NOP = 130^\circ$, what is the measure of $\angle QOP$?

90°
Points, Lines, Line Segments, and Rays

Directions: Identify and name each of the following.

- \(\text{Point Z} \)
- \(\text{Line GH} \)
- \(\text{Line Segment CD} \)
- \(\text{Ray XY} \)

Directions: Draw and label each of the following.

<table>
<thead>
<tr>
<th>Point Z</th>
<th>Line GH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Segment CD</td>
<td>Ray XY</td>
</tr>
</tbody>
</table>
Points, Lines, Line Segments, and Rays

Directions: Identify and name each of the following.

- Point D
- Ray AB
- Line VW
- Line Segment JK

Directions: Draw and label each of the following.

- Point Z
- Line GH
- Line Segment CD
- Ray XY
4.G.1

Angles

Directions: Identify the angle types. (acute, right, or obtuse?)

Angle Type:

Angle Type:

Angle Type:

Directions: Use a protractor to draw and label each type of angle.

Acute Angle:

Right Angle:

Obtuse Angle:

Directions: Identify the angles below. (acute, right, or obtuse?)

- Angle Type: Right Angle
- Angle Type: Obtuse Angle
- Angle Type: Acute Angle

Directions: Use a protractor to draw and label each type of angle.
Perpendicular & Parallel Lines

Directions: Identify whether each pair of lines is parallel, perpendicular, or neither.

Directions: For each line, add another to make the lines parallel or perpendicular.

Parallel Lines:

Perpendicular Lines:
Perpendicular & Parallel Lines

Directions: Identify whether each pair of lines is parallel, perpendicular, or neither.

- Perpendicular
- Neither
- Parallel
- Neither

Directions: For each line, add another to make the lines parallel or perpendicular.

Parallel Lines:

Perpendicular Lines:
Quadrilaterals & Triangles

Directions: Name and describe each shape.

<table>
<thead>
<tr>
<th>Name: ___________________</th>
<th>Description: __________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>______________________</td>
</tr>
<tr>
<td></td>
<td>______________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: ___________________</th>
<th>Description: __________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>______________________</td>
</tr>
<tr>
<td></td>
<td>______________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: ___________________</th>
<th>Description: __________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>______________________</td>
</tr>
<tr>
<td></td>
<td>______________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: ___________________</th>
<th>Description: __________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>______________________</td>
</tr>
<tr>
<td></td>
<td>______________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: ___________________</th>
<th>Description: __________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>______________________</td>
</tr>
<tr>
<td></td>
<td>______________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: ___________________</th>
<th>Description: __________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>______________________</td>
</tr>
<tr>
<td></td>
<td>______________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: ___________________</th>
<th>Description: __________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>______________________</td>
</tr>
<tr>
<td></td>
<td>______________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: ___________________</th>
<th>Description: __________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>______________________</td>
</tr>
<tr>
<td></td>
<td>______________________</td>
</tr>
</tbody>
</table>
Quadrilaterals & Triangles

Directions: Name a describe each shape.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isosceles</td>
<td>2 congruent sides</td>
</tr>
<tr>
<td>Square</td>
<td>Congruent sides, 4 right angles, 2 sets of parallel sides</td>
</tr>
<tr>
<td>Trapezoid</td>
<td>1 set of parallel sides</td>
</tr>
<tr>
<td>Rectangle</td>
<td>2 sets of parallel sides, 4 right angles</td>
</tr>
<tr>
<td>Scalene</td>
<td>All lengths are different</td>
</tr>
<tr>
<td>Rhombus</td>
<td>2 sets of parallel sides, congruent sides</td>
</tr>
<tr>
<td>Equilateral</td>
<td>All congruent sides</td>
</tr>
<tr>
<td>Parallelogram</td>
<td>2 sets of parallel sides</td>
</tr>
<tr>
<td>Right</td>
<td>1 right angle</td>
</tr>
</tbody>
</table>
Lines of Symmetry

Directions: Decide whether each shape is line-symmetric. If so, draw all the lines of symmetry for each.

Line Symmetric? _____

Line Symmetric? _____
Lines of Symmetry

Directions: Decide whether each shape is line-symmetric. If so, draw all lines of symmetry.

Answer Key

Yes No Yes
Yes Yes No
No No Yes
Yes Yes No
No No Yes
No No Yes
No No Yes
Yes Yes No
Yes Yes No
Thank you so much for purchasing this product. If you have any questions or comments, please feel free to email me!

rjyoung23@gmail.com

Copyright © Rebecca Rojas 2013
All rights reserved by the author.
Permission to copy for classroom use only.

Credits for Graphics & Fonts:

My Cute Graphics
www.mycutegraphics.com

KG Fonts